Copied to
clipboard

G = C22.D56order 448 = 26·7

3rd non-split extension by C22 of D56 acting via D56/D28=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C22.4D56, C23.39D28, C22⋊C84D7, C561C44C2, C2.8(C2×D56), C14.6(C2×D8), (C2×C14).5D8, (C2×C8).4D14, (C2×C4).34D28, (C2×C28).45D4, C2.D566C2, C287D4.3C2, (C2×C56).4C22, (C22×C14).56D4, (C22×C4).86D14, C71(C22.D8), C28.283(C4○D4), (C2×C28).746C23, (C2×D28).11C22, C22.109(C2×D28), C4.107(D42D7), C2.13(C8.D14), C14.10(C8.C22), C4⋊Dic7.271C22, (C22×C28).53C22, C2.14(C22.D28), C14.18(C22.D4), (C7×C22⋊C8)⋊6C2, (C2×C4⋊Dic7)⋊6C2, (C2×C14).129(C2×D4), (C2×C4).691(C22×D7), SmallGroup(448,270)

Series: Derived Chief Lower central Upper central

C1C2×C28 — C22.D56
C1C7C14C28C2×C28C2×D28C287D4 — C22.D56
C7C14C2×C28 — C22.D56
C1C22C22×C4C22⋊C8

Generators and relations for C22.D56
 G = < a,b,c,d | a2=b2=c56=1, d2=b, cac-1=ab=ba, ad=da, bc=cb, bd=db, dcd-1=bc-1 >

Subgroups: 700 in 114 conjugacy classes, 43 normal (25 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C7, C8, C2×C4, C2×C4, D4, C23, C23, D7, C14, C14, C22⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C2×D4, Dic7, C28, C28, D14, C2×C14, C2×C14, C2×C14, C22⋊C8, D4⋊C4, C2.D8, C2×C4⋊C4, C4⋊D4, C56, D28, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C22×D7, C22×C14, C22.D8, C4⋊Dic7, C4⋊Dic7, C4⋊Dic7, D14⋊C4, C2×C56, C2×D28, C22×Dic7, C2×C7⋊D4, C22×C28, C561C4, C2.D56, C7×C22⋊C8, C2×C4⋊Dic7, C287D4, C22.D56
Quotients: C1, C2, C22, D4, C23, D7, D8, C2×D4, C4○D4, D14, C22.D4, C2×D8, C8.C22, D28, C22×D7, C22.D8, D56, C2×D28, D42D7, C22.D28, C2×D56, C8.D14, C22.D56

Smallest permutation representation of C22.D56
On 224 points
Generators in S224
(1 29)(2 135)(3 31)(4 137)(5 33)(6 139)(7 35)(8 141)(9 37)(10 143)(11 39)(12 145)(13 41)(14 147)(15 43)(16 149)(17 45)(18 151)(19 47)(20 153)(21 49)(22 155)(23 51)(24 157)(25 53)(26 159)(27 55)(28 161)(30 163)(32 165)(34 167)(36 113)(38 115)(40 117)(42 119)(44 121)(46 123)(48 125)(50 127)(52 129)(54 131)(56 133)(57 85)(58 201)(59 87)(60 203)(61 89)(62 205)(63 91)(64 207)(65 93)(66 209)(67 95)(68 211)(69 97)(70 213)(71 99)(72 215)(73 101)(74 217)(75 103)(76 219)(77 105)(78 221)(79 107)(80 223)(81 109)(82 169)(83 111)(84 171)(86 173)(88 175)(90 177)(92 179)(94 181)(96 183)(98 185)(100 187)(102 189)(104 191)(106 193)(108 195)(110 197)(112 199)(114 142)(116 144)(118 146)(120 148)(122 150)(124 152)(126 154)(128 156)(130 158)(132 160)(134 162)(136 164)(138 166)(140 168)(170 198)(172 200)(174 202)(176 204)(178 206)(180 208)(182 210)(184 212)(186 214)(188 216)(190 218)(192 220)(194 222)(196 224)
(1 162)(2 163)(3 164)(4 165)(5 166)(6 167)(7 168)(8 113)(9 114)(10 115)(11 116)(12 117)(13 118)(14 119)(15 120)(16 121)(17 122)(18 123)(19 124)(20 125)(21 126)(22 127)(23 128)(24 129)(25 130)(26 131)(27 132)(28 133)(29 134)(30 135)(31 136)(32 137)(33 138)(34 139)(35 140)(36 141)(37 142)(38 143)(39 144)(40 145)(41 146)(42 147)(43 148)(44 149)(45 150)(46 151)(47 152)(48 153)(49 154)(50 155)(51 156)(52 157)(53 158)(54 159)(55 160)(56 161)(57 172)(58 173)(59 174)(60 175)(61 176)(62 177)(63 178)(64 179)(65 180)(66 181)(67 182)(68 183)(69 184)(70 185)(71 186)(72 187)(73 188)(74 189)(75 190)(76 191)(77 192)(78 193)(79 194)(80 195)(81 196)(82 197)(83 198)(84 199)(85 200)(86 201)(87 202)(88 203)(89 204)(90 205)(91 206)(92 207)(93 208)(94 209)(95 210)(96 211)(97 212)(98 213)(99 214)(100 215)(101 216)(102 217)(103 218)(104 219)(105 220)(106 221)(107 222)(108 223)(109 224)(110 169)(111 170)(112 171)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 182 162 67)(2 66 163 181)(3 180 164 65)(4 64 165 179)(5 178 166 63)(6 62 167 177)(7 176 168 61)(8 60 113 175)(9 174 114 59)(10 58 115 173)(11 172 116 57)(12 112 117 171)(13 170 118 111)(14 110 119 169)(15 224 120 109)(16 108 121 223)(17 222 122 107)(18 106 123 221)(19 220 124 105)(20 104 125 219)(21 218 126 103)(22 102 127 217)(23 216 128 101)(24 100 129 215)(25 214 130 99)(26 98 131 213)(27 212 132 97)(28 96 133 211)(29 210 134 95)(30 94 135 209)(31 208 136 93)(32 92 137 207)(33 206 138 91)(34 90 139 205)(35 204 140 89)(36 88 141 203)(37 202 142 87)(38 86 143 201)(39 200 144 85)(40 84 145 199)(41 198 146 83)(42 82 147 197)(43 196 148 81)(44 80 149 195)(45 194 150 79)(46 78 151 193)(47 192 152 77)(48 76 153 191)(49 190 154 75)(50 74 155 189)(51 188 156 73)(52 72 157 187)(53 186 158 71)(54 70 159 185)(55 184 160 69)(56 68 161 183)

G:=sub<Sym(224)| (1,29)(2,135)(3,31)(4,137)(5,33)(6,139)(7,35)(8,141)(9,37)(10,143)(11,39)(12,145)(13,41)(14,147)(15,43)(16,149)(17,45)(18,151)(19,47)(20,153)(21,49)(22,155)(23,51)(24,157)(25,53)(26,159)(27,55)(28,161)(30,163)(32,165)(34,167)(36,113)(38,115)(40,117)(42,119)(44,121)(46,123)(48,125)(50,127)(52,129)(54,131)(56,133)(57,85)(58,201)(59,87)(60,203)(61,89)(62,205)(63,91)(64,207)(65,93)(66,209)(67,95)(68,211)(69,97)(70,213)(71,99)(72,215)(73,101)(74,217)(75,103)(76,219)(77,105)(78,221)(79,107)(80,223)(81,109)(82,169)(83,111)(84,171)(86,173)(88,175)(90,177)(92,179)(94,181)(96,183)(98,185)(100,187)(102,189)(104,191)(106,193)(108,195)(110,197)(112,199)(114,142)(116,144)(118,146)(120,148)(122,150)(124,152)(126,154)(128,156)(130,158)(132,160)(134,162)(136,164)(138,166)(140,168)(170,198)(172,200)(174,202)(176,204)(178,206)(180,208)(182,210)(184,212)(186,214)(188,216)(190,218)(192,220)(194,222)(196,224), (1,162)(2,163)(3,164)(4,165)(5,166)(6,167)(7,168)(8,113)(9,114)(10,115)(11,116)(12,117)(13,118)(14,119)(15,120)(16,121)(17,122)(18,123)(19,124)(20,125)(21,126)(22,127)(23,128)(24,129)(25,130)(26,131)(27,132)(28,133)(29,134)(30,135)(31,136)(32,137)(33,138)(34,139)(35,140)(36,141)(37,142)(38,143)(39,144)(40,145)(41,146)(42,147)(43,148)(44,149)(45,150)(46,151)(47,152)(48,153)(49,154)(50,155)(51,156)(52,157)(53,158)(54,159)(55,160)(56,161)(57,172)(58,173)(59,174)(60,175)(61,176)(62,177)(63,178)(64,179)(65,180)(66,181)(67,182)(68,183)(69,184)(70,185)(71,186)(72,187)(73,188)(74,189)(75,190)(76,191)(77,192)(78,193)(79,194)(80,195)(81,196)(82,197)(83,198)(84,199)(85,200)(86,201)(87,202)(88,203)(89,204)(90,205)(91,206)(92,207)(93,208)(94,209)(95,210)(96,211)(97,212)(98,213)(99,214)(100,215)(101,216)(102,217)(103,218)(104,219)(105,220)(106,221)(107,222)(108,223)(109,224)(110,169)(111,170)(112,171), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,182,162,67)(2,66,163,181)(3,180,164,65)(4,64,165,179)(5,178,166,63)(6,62,167,177)(7,176,168,61)(8,60,113,175)(9,174,114,59)(10,58,115,173)(11,172,116,57)(12,112,117,171)(13,170,118,111)(14,110,119,169)(15,224,120,109)(16,108,121,223)(17,222,122,107)(18,106,123,221)(19,220,124,105)(20,104,125,219)(21,218,126,103)(22,102,127,217)(23,216,128,101)(24,100,129,215)(25,214,130,99)(26,98,131,213)(27,212,132,97)(28,96,133,211)(29,210,134,95)(30,94,135,209)(31,208,136,93)(32,92,137,207)(33,206,138,91)(34,90,139,205)(35,204,140,89)(36,88,141,203)(37,202,142,87)(38,86,143,201)(39,200,144,85)(40,84,145,199)(41,198,146,83)(42,82,147,197)(43,196,148,81)(44,80,149,195)(45,194,150,79)(46,78,151,193)(47,192,152,77)(48,76,153,191)(49,190,154,75)(50,74,155,189)(51,188,156,73)(52,72,157,187)(53,186,158,71)(54,70,159,185)(55,184,160,69)(56,68,161,183)>;

G:=Group( (1,29)(2,135)(3,31)(4,137)(5,33)(6,139)(7,35)(8,141)(9,37)(10,143)(11,39)(12,145)(13,41)(14,147)(15,43)(16,149)(17,45)(18,151)(19,47)(20,153)(21,49)(22,155)(23,51)(24,157)(25,53)(26,159)(27,55)(28,161)(30,163)(32,165)(34,167)(36,113)(38,115)(40,117)(42,119)(44,121)(46,123)(48,125)(50,127)(52,129)(54,131)(56,133)(57,85)(58,201)(59,87)(60,203)(61,89)(62,205)(63,91)(64,207)(65,93)(66,209)(67,95)(68,211)(69,97)(70,213)(71,99)(72,215)(73,101)(74,217)(75,103)(76,219)(77,105)(78,221)(79,107)(80,223)(81,109)(82,169)(83,111)(84,171)(86,173)(88,175)(90,177)(92,179)(94,181)(96,183)(98,185)(100,187)(102,189)(104,191)(106,193)(108,195)(110,197)(112,199)(114,142)(116,144)(118,146)(120,148)(122,150)(124,152)(126,154)(128,156)(130,158)(132,160)(134,162)(136,164)(138,166)(140,168)(170,198)(172,200)(174,202)(176,204)(178,206)(180,208)(182,210)(184,212)(186,214)(188,216)(190,218)(192,220)(194,222)(196,224), (1,162)(2,163)(3,164)(4,165)(5,166)(6,167)(7,168)(8,113)(9,114)(10,115)(11,116)(12,117)(13,118)(14,119)(15,120)(16,121)(17,122)(18,123)(19,124)(20,125)(21,126)(22,127)(23,128)(24,129)(25,130)(26,131)(27,132)(28,133)(29,134)(30,135)(31,136)(32,137)(33,138)(34,139)(35,140)(36,141)(37,142)(38,143)(39,144)(40,145)(41,146)(42,147)(43,148)(44,149)(45,150)(46,151)(47,152)(48,153)(49,154)(50,155)(51,156)(52,157)(53,158)(54,159)(55,160)(56,161)(57,172)(58,173)(59,174)(60,175)(61,176)(62,177)(63,178)(64,179)(65,180)(66,181)(67,182)(68,183)(69,184)(70,185)(71,186)(72,187)(73,188)(74,189)(75,190)(76,191)(77,192)(78,193)(79,194)(80,195)(81,196)(82,197)(83,198)(84,199)(85,200)(86,201)(87,202)(88,203)(89,204)(90,205)(91,206)(92,207)(93,208)(94,209)(95,210)(96,211)(97,212)(98,213)(99,214)(100,215)(101,216)(102,217)(103,218)(104,219)(105,220)(106,221)(107,222)(108,223)(109,224)(110,169)(111,170)(112,171), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,182,162,67)(2,66,163,181)(3,180,164,65)(4,64,165,179)(5,178,166,63)(6,62,167,177)(7,176,168,61)(8,60,113,175)(9,174,114,59)(10,58,115,173)(11,172,116,57)(12,112,117,171)(13,170,118,111)(14,110,119,169)(15,224,120,109)(16,108,121,223)(17,222,122,107)(18,106,123,221)(19,220,124,105)(20,104,125,219)(21,218,126,103)(22,102,127,217)(23,216,128,101)(24,100,129,215)(25,214,130,99)(26,98,131,213)(27,212,132,97)(28,96,133,211)(29,210,134,95)(30,94,135,209)(31,208,136,93)(32,92,137,207)(33,206,138,91)(34,90,139,205)(35,204,140,89)(36,88,141,203)(37,202,142,87)(38,86,143,201)(39,200,144,85)(40,84,145,199)(41,198,146,83)(42,82,147,197)(43,196,148,81)(44,80,149,195)(45,194,150,79)(46,78,151,193)(47,192,152,77)(48,76,153,191)(49,190,154,75)(50,74,155,189)(51,188,156,73)(52,72,157,187)(53,186,158,71)(54,70,159,185)(55,184,160,69)(56,68,161,183) );

G=PermutationGroup([[(1,29),(2,135),(3,31),(4,137),(5,33),(6,139),(7,35),(8,141),(9,37),(10,143),(11,39),(12,145),(13,41),(14,147),(15,43),(16,149),(17,45),(18,151),(19,47),(20,153),(21,49),(22,155),(23,51),(24,157),(25,53),(26,159),(27,55),(28,161),(30,163),(32,165),(34,167),(36,113),(38,115),(40,117),(42,119),(44,121),(46,123),(48,125),(50,127),(52,129),(54,131),(56,133),(57,85),(58,201),(59,87),(60,203),(61,89),(62,205),(63,91),(64,207),(65,93),(66,209),(67,95),(68,211),(69,97),(70,213),(71,99),(72,215),(73,101),(74,217),(75,103),(76,219),(77,105),(78,221),(79,107),(80,223),(81,109),(82,169),(83,111),(84,171),(86,173),(88,175),(90,177),(92,179),(94,181),(96,183),(98,185),(100,187),(102,189),(104,191),(106,193),(108,195),(110,197),(112,199),(114,142),(116,144),(118,146),(120,148),(122,150),(124,152),(126,154),(128,156),(130,158),(132,160),(134,162),(136,164),(138,166),(140,168),(170,198),(172,200),(174,202),(176,204),(178,206),(180,208),(182,210),(184,212),(186,214),(188,216),(190,218),(192,220),(194,222),(196,224)], [(1,162),(2,163),(3,164),(4,165),(5,166),(6,167),(7,168),(8,113),(9,114),(10,115),(11,116),(12,117),(13,118),(14,119),(15,120),(16,121),(17,122),(18,123),(19,124),(20,125),(21,126),(22,127),(23,128),(24,129),(25,130),(26,131),(27,132),(28,133),(29,134),(30,135),(31,136),(32,137),(33,138),(34,139),(35,140),(36,141),(37,142),(38,143),(39,144),(40,145),(41,146),(42,147),(43,148),(44,149),(45,150),(46,151),(47,152),(48,153),(49,154),(50,155),(51,156),(52,157),(53,158),(54,159),(55,160),(56,161),(57,172),(58,173),(59,174),(60,175),(61,176),(62,177),(63,178),(64,179),(65,180),(66,181),(67,182),(68,183),(69,184),(70,185),(71,186),(72,187),(73,188),(74,189),(75,190),(76,191),(77,192),(78,193),(79,194),(80,195),(81,196),(82,197),(83,198),(84,199),(85,200),(86,201),(87,202),(88,203),(89,204),(90,205),(91,206),(92,207),(93,208),(94,209),(95,210),(96,211),(97,212),(98,213),(99,214),(100,215),(101,216),(102,217),(103,218),(104,219),(105,220),(106,221),(107,222),(108,223),(109,224),(110,169),(111,170),(112,171)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,182,162,67),(2,66,163,181),(3,180,164,65),(4,64,165,179),(5,178,166,63),(6,62,167,177),(7,176,168,61),(8,60,113,175),(9,174,114,59),(10,58,115,173),(11,172,116,57),(12,112,117,171),(13,170,118,111),(14,110,119,169),(15,224,120,109),(16,108,121,223),(17,222,122,107),(18,106,123,221),(19,220,124,105),(20,104,125,219),(21,218,126,103),(22,102,127,217),(23,216,128,101),(24,100,129,215),(25,214,130,99),(26,98,131,213),(27,212,132,97),(28,96,133,211),(29,210,134,95),(30,94,135,209),(31,208,136,93),(32,92,137,207),(33,206,138,91),(34,90,139,205),(35,204,140,89),(36,88,141,203),(37,202,142,87),(38,86,143,201),(39,200,144,85),(40,84,145,199),(41,198,146,83),(42,82,147,197),(43,196,148,81),(44,80,149,195),(45,194,150,79),(46,78,151,193),(47,192,152,77),(48,76,153,191),(49,190,154,75),(50,74,155,189),(51,188,156,73),(52,72,157,187),(53,186,158,71),(54,70,159,185),(55,184,160,69),(56,68,161,183)]])

79 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E4F4G4H7A7B7C8A8B8C8D14A···14I14J···14O28A···28L28M···28R56A···56X
order122222244444444777888814···1414···1428···2828···2856···56
size11112256224282828285622244442···24···42···24···44···4

79 irreducible representations

dim1111112222222222444
type+++++++++++++++---
imageC1C2C2C2C2C2D4D4D7C4○D4D8D14D14D28D28D56C8.C22D42D7C8.D14
kernelC22.D56C561C4C2.D56C7×C22⋊C8C2×C4⋊Dic7C287D4C2×C28C22×C14C22⋊C8C28C2×C14C2×C8C22×C4C2×C4C23C22C14C4C2
# reps12211111344636624166

Matrix representation of C22.D56 in GL6(𝔽113)

11200000
01120000
001000
000100
000010
000050112
,
100000
010000
001000
000100
00001120
00000112
,
4400000
1180000
006710400
00910000
000025112
00005988
,
11530000
21020000
00766000
00453700
0000150
00007298

G:=sub<GL(6,GF(113))| [112,0,0,0,0,0,0,112,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,50,0,0,0,0,0,112],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,112,0,0,0,0,0,0,112],[44,1,0,0,0,0,0,18,0,0,0,0,0,0,67,9,0,0,0,0,104,100,0,0,0,0,0,0,25,59,0,0,0,0,112,88],[11,2,0,0,0,0,53,102,0,0,0,0,0,0,76,45,0,0,0,0,60,37,0,0,0,0,0,0,15,72,0,0,0,0,0,98] >;

C22.D56 in GAP, Magma, Sage, TeX

C_2^2.D_{56}
% in TeX

G:=Group("C2^2.D56");
// GroupNames label

G:=SmallGroup(448,270);
// by ID

G=gap.SmallGroup(448,270);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,253,254,219,310,1123,136,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^2=c^56=1,d^2=b,c*a*c^-1=a*b=b*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=b*c^-1>;
// generators/relations

׿
×
𝔽